Overview
We want to approximate the function \(f(x) = x(1-x)\) where \(x \in [0,1]\)
you can run the example with the following command.
cargo run --example function-approximation
Problem Definition
We want to approximate the function in this specified domain with 5 points. I choose this 5 point to be equally spaced from each other. So the points are X = [0.0,0.25,0.5,0.75,1.0]
by computing the original function in these points we can find Y =[0.0,.1875,0.25,0.1875,0.0]
. We can see that this vector is symmetric so we can just use 3 of them instead of all 5.
Import
We will import the necessary modules:
use fuzzy_logic_rs::{
defuzzifications::TSKDefuzzifiers,
fuzzy_inference_systems::TSKFIS,
membership_functions::{Gaussian, MFKind, MembershipFunction},
rules::Rule,
s_norms::SNorms,
t_norms::TNorms,
variables::{InputVariable, TSKOutputVariable},
};
Setup
First we add some variables and a closure to help us in the future.
let x1 = 0.0;
let x2 = 0.25;
let x3 = 0.5;
let x4 = 0.75;
let x5 = 1.0;
let original_function = |x| x * (1.0 - x);
let y15 = original_function(x1);
let y24 = original_function(x2);
let y3 = original_function(x3);
Then, we will using TSK FIS with the following configurations.
let mut fis = TSKFIS::new(SNorms::Max, TNorms::Min, TSKDefuzzifiers::Mean);
Inputs
We have only on input that is x
. We choose Gaussian membership function for all of
this variables's membership function, and then add this variables to the system.
let mut x: InputVariable = InputVariable::new("X".to_string(), (0.0, 1.0));
x.add_membership(MembershipFunction::new(
"x1".to_string(),
MFKind::Gaussian(Gaussian::new(x1, 0.09)),
));
x.add_membership(MembershipFunction::new(
"x2".to_string(),
MFKind::Gaussian(Gaussian::new(x2, 0.09)),
));
x.add_membership(MembershipFunction::new(
"x3".to_string(),
MFKind::Gaussian(Gaussian::new(x3, 0.09)),
));
x.add_membership(MembershipFunction::new(
"x4".to_string(),
MFKind::Gaussian(Gaussian::new(x4, 0.09)),
));
x.add_membership(MembershipFunction::new(
"x5".to_string(),
MFKind::Gaussian(Gaussian::new(x5, 0.09)),
));
fis.add_input(x);
Outputs
This function is only have one output. I choose 3 memberships because this function is symmetric about line \(x=1\) and the data is also symmetric. You can use 5 functions with no difference in output.
let mut y: TSKOutputVariable = TSKOutputVariable::new("Y".to_string());
y.add_constant_membership(y15);
y.add_constant_membership(y24);
y.add_constant_membership(y3);
fis.add_output(y);
Rules
Rules for this problem is simple.
- IF x IS x1 THEN Y15.
- IF x IS x2 THEN Y24.
- IF x IS x3 THEN Y3.
- IF x IS x4 THEN Y24.
- IF x IS x5 THEN Y15.
We can define the rules now:
fis.add_rule(Rule::new_and(vec![0, 0], 1.0));
fis.add_rule(Rule::new_and(vec![1, 1], 1.0));
fis.add_rule(Rule::new_and(vec![2, 2], 1.0));
fis.add_rule(Rule::new_and(vec![3, 1], 1.0));
fis.add_rule(Rule::new_and(vec![4, 0], 1.0));
Weights and Complements
You can change weights and changing the second argument, and you can add -
sign to complement that variables
Output
The problem formulation is done and we can use this to compute the output of the system:
let out: Vec<f64> = fis.compute_outputs(vec![0.6]);
println!("{:?}", out);
If we run it the output will be:
❯ cargo run --example function-approximation
Compiling fuzzy-logic_rs v0.5.0
Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.31s
Running `target/debug/examples/function-approximation`
[0.2301986089076184]
Plot
We can plot this approximation and compare it to the original function.
You can add more points to improve its accuracy, but with only 5 points it gave us a good result.